Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp.
View/ Open
Publisher version (Check access options)
Check access options
Date
2021Author
Ousaadi M.I.Merouane F.
Berkani M.
Almomani F.
Vasseghian Y.
Kitouni M.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
This study underlines the biotechnical valorization of the accumulated and unusable remains of agro-industrial orange fruit peel waste to produce α-amylase under submerged conditions by Streptomyces sp. KP314280 (20r). The response surface methodology based on central composite design (RSM-CCD) and artificial neural network coupled with a genetic algorithm (ANN-GA) were used to model and optimize the conditions for the α-amylase production. Four independent variables were evaluated for α-amylase activity including substrate concentration, inoculum size, sodium chloride powder (NaCl), and pH. A ten-fold cross-validation indicated that the ANN has a greater ability than the RSM to predict the α-amylase activity (R2ANN = 0.884 and R2RSM = 0.725). The analysis of variance indicated that the aforementioned four factors significantly affected the α-amylase activity. Additionally, the α-amylase production experiments were conducted according to the optimal conditions generated by the GA. The results indicated that the amylase yield increased by 4-fold. Moreover, the α-amylase production (12.19 U/mL) in the optimized medium was compatible with the predicted conditions outlined by the ANN-GA model (12.62 U/mL). As such, the ANN and GA combination is optimizable for α-amylase production and exhibits an accurate prediction which provides an alternative to other biological applications.
Collections
- Chemical Engineering [1175 items ]