Innovative bppo anion exchange membranes formulation using diffusion dialysis-enhanced acid regeneration system
Author | Khan M.I. |
Author | Khraisheh M. |
Author | Almomani F. |
Available date | 2022-04-25T08:00:17Z |
Publication Date | 2021 |
Publication Name | Membranes |
Resource | Scopus |
Identifier | http://dx.doi.org/10.3390/membranes11050311 |
Abstract | Recycling of acid from aqueous waste streams is crucial not only from the environmental point of view but also for maturing the feasible method (diffusion dialysis). Anion exchange membrane (AEM)–based diffusion dialysis process is one of the beneficial ways to recover acid from aqueous waste streams. In this article, the synthesis of a series of brominated poly (2, 6–dimethyl-1, 4–phenylene oxide) (BPPO)-based anion exchange membranes (AEMs) through quaternization with triphenylphosphine (TPP) were reported for acid recovery via diffusion dialysis process. The successful synthesis of the prepared membranes was confirmed by Fourier transform infrared (FTIR) spectroscopy. The as-synthesized anion exchange membranes represented water uptake (WR) of 44 to 66%, ion exchange capacity of (IEC) of 1.22 to 1.86 mmol/g, and linear swelling ratio (LSR) of 8 to 20%. They exhibited excellent thermal, mechanical, and acid stability. They showed homogeneous morphology. The acid recovery performance of the synthesized AEMs was investigated in a two compartment stack using simulated mixture of HCl and FeCl2 as feed solution at room temperature. For the synthesized anion exchange membranes TPP–43 to TPP–100, the diffusion dialysis coefficient of acid (UH+) was in the range of 6.7 to 26.3 (10−3 m/h) whereas separation factor (S) was in the range of 27 to 49 at 25 °C. Obtained results revealed that diffusion dialysis performance of the synthesized AEMs was higher than the commercial membrane DF–120B (UH+ = 0.004 m/h, S = 24.3) at room temperature. It showed that the prepared AEMs here could be excellent candidates for the diffusion dialysis process |
Sponsor | Qatar University |
Language | en |
Publisher | MDPI AG |
Subject | Anion exchange membrane BPPO Diffusion dialysis Ion exchange capacity Triphenylphosphine Water uptake |
Type | Article |
Issue Number | 5 |
Volume Number | 11 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Chemical Engineering [1174 items ]