• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of electrospun polystyrene membranes in synthetic produced industrial water using direct-contact membrane distillation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Abdelrazeq H.
    Khraisheh M.
    Al Momani F.
    McLeskey J.T.
    Jr
    Hassan M.K.
    Gad-el-Hak M.
    Tafreshi H.V.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Desalination of produced water in the gulf petrochemical industry is a continuing challenge to major research groups in the field. With a focus on produced water from desalination plants, it has become crucial to define and follow specific protocol in wastewater purification technologies. In this work, an optimized guideline for direct contact membrane distillation (DCMD) was developed and implemented. A bench-scale DCMD unit was performed under optimum process parameters of feed and distillation inlet temperatures of TFeed = 60 °C and TDist = 20 °C, respectively. A low flow rate of 0.03 L/min was used to avoid wetting of the fabricated membrane. A hydrophobic polystyrene flat sheet was prepared in the labs using a custom-made electrospinning apparatus. The effect of varying concentrations on the hydrophobic polystyrene membrane was studied using a high concentration brine feed (C1 ≈ 75,500 ppm) and another feed of lower concentration (C2 ≈ 25,200 ppm). A high salt rejection rate of 99% was achieved. The morphological structure, pore size and fiber length was analyzed using SEM. Conductivity measurements have confirmed an improved permeate quality of 99%. Thus, as per the DCMD performance of the polystyrene membrane, the generated permeate indicates that the membrane performance may have scalable potential contribution to industrial wastewater purification.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2020.114663
    http://hdl.handle.net/10576/30314
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video