• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling and simulation of fertilizer drawn forward osmosis process using Aspen Plus-MATLAB model

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Gulied M.
    Al Nouss A.
    Khraisheh M.
    AlMomani F.
    Metadata
    Show full item record
    Abstract
    Although experimental studies on the impact of feed (FS) and draw solutions (DS) on the forward osmosis (FO) applications are reported in literature, systematic mathematical modeling considering the dynamic change in solution properties is lacking. In this study, asymmetric FO membrane simulation model was established using Aspen Plus-MATLAB subroutines algorithm to account for the effect of concentration polarization (CP), types of FS and DS and in their properties on FO performance. The developed model was validated by comparing the simulation with experimental results. The model successfully predict the performance of FO process under wide varieties of operational conditions, FS and DS flow rates and concentrations. The model showed that the variation of MCFDS concentration had a marked effect on water flux (WF) in contrast to flow rate. The WFs obtained from seawater (SW) increased from 5.28 L/m2.h to 42.08 L/m2.h as MCFDS changes from 150 g/L to 300 g/L which corresponding to 11.66% to 45.33% of water recovery. As for synthetic aquaculture wastewater (SAWW), 9.70 L/m2.h to 37.32 L/m2.h of WFs were exhibited with the increase of MCFDS concentration from 50 g/L to 200 g/L, respectively. The effect of concentrated external CP (CECP) was found to be significant in case of SW and negligible with SAWW. Whereas, increasing MCFDS concentration increases the severity effect of dilutive internal CP (DICP). The degree of DICP depends on the solute resistivity (KD) of porous layer, which were elevated (4.22?5.88 s/m) as MCFDS concentration increases (150?300 g/L). The study demonstrated the effectiveness and suitability of the developed Aspen Plus-MATLAB model simulating the FO process.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2019.134461
    http://hdl.handle.net/10576/30331
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video