• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the flocculation of stable bentonite suspension using hybrid system of polyelectrolytes and NADES

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Al-Risheq D.I.M.
    Shaikh S.M.R.
    Nasser M.S.
    Almomani F.
    Hussein I.A.
    Hassan M.K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, the influence of a hybrid coagulation/flocculation process on the electrokinetic of highly stable bentonite suspension has been examined. Choline chloride (ChCl) based natural deep eutectic solvent (NADES) was utilized as coagulant coupled with polyacrylamide (PAM) with different charge types and densities used as a flocculant. Turbidity, zeta potential, and floc size analysis were used to evaluate the changes in the flocculation efficiency of hybrid systems relative to the single NADES and PAM systems. The study revealed a clear impact on the flocculation behavior of cationic and anionic PAMs in the presence of NADES. The addition of NADES as a coagulant aid reversed the flocculation activities of the PAMs due to the presence of positively charged NADES that enhances the adsorption of the anionic polyacrylamide (APAM) over the cationic polyacrylamide (CPAM). Low flocculation efficiency was observed for the hybrid systems of NADES/CPAM as indicated by the highly positive zeta potential () and small flocs (). Hybrid systems of NADES/ APAMs, on the other hand, significantly improved the flocculation efficiency by achieving a zeta potential within the instability region () and relatively large flocs . Aside from the charge type, the molecular weight (MW) and charge density (CD) of the PAM had a significant impact on the flocculation behavior of bentonite suspension. High PAM adversely impacted the flocculation parameters for APAMs. Therefore, a hybrid system of NADES/ AN 923 SH at an APAM dosage of with residual turbidity of 0.3 NTU, -potential of and of was the optimum system with the most significant enhancements compared to single systems.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122838314&doi=10.1016%2fj.colsurfa.2022.128305&partnerID=40&md5=a92cd3f9425b2fedbc2fa13f7ca57021
    DOI/handle
    http://dx.doi.org/10.1016/j.colsurfa.2022.128305
    http://hdl.handle.net/10576/30363
    Collections
    • Chemical Engineering [‎1194‎ items ]
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video