Show simple item record

AuthorAl-Risheq D.I.M.
AuthorNasser M.S.
AuthorQiblawey H.
AuthorHussein I.A.
AuthorAl-Ghouti M.A.
Available date2022-04-25T10:59:42Z
Publication Date2021
Publication NameSeparation and Purification Technology
ResourceScopus
Identifierhttp://dx.doi.org/10.1016/j.seppur.2021.118799
URIhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85104650980&doi=10.1016%2fj.seppur.2021.118799&partnerID=40&md5=4c8bddfca1d2fb1aed95603bcba99608
URIhttp://hdl.handle.net/10576/30374
AbstractColloids in wastewater are considered a serious problem due to their stability and separation difficulty. Coagulation/ flocculation processes are the most common for the separation of colloids because of their high-performance efficiency, simplicity, and economical characteristic. Natural deep eutectic solvents (NADES) are green solvents that proved to be highly effective in the destabilization of colloidal suspensions. In the present study, the influence of choline chloride (ChCl) and lactic acid (LA) based NADES on the rheological behavior of bentonite suspension was investigated. Furthermore, it examines the difference in the rheological behavior of NADES treated suspension with others treated with ChCl-LA mixture (LA and ChCl added one after the other). The rheological behavior are correlated to the destabilization degree of each coagulants through turbidity reduction, zeta potential, particle size distribution, and capillary suction time. The study revealed that while untreated bentonite suspension follows a Newtonian behavior, treated suspensions are non-Newtonian fluids with shear thinning behavior. Furthermore, all treated suspensions showed elastic behavior under moderate to low oscillatory frequencies. The changes in the studied rheological parameters (i.e., initial viscosity, elastic modulus, and Bingham yield stress) were influenced by the concentration in addition to the structure of the selected coagulant. The addition of higher coagulant concentration enhances the elastic properties from two to more than ten times depending on the concentration and coagulant type. At concentration of , suspension treated with NADES achieved an initial viscosity of and a yield stress of which indicates the formation of stronger and stiffer flocs. On the other hand, ChCl-LA treated suspension had viscosity and yield stress of 9 and 15 magnitudes lower, respectively. Enhancing the rheological behavior of suspensions is usually attributed to higher destabilization degree, which is desirable for the further treatment processes. By increasing the concentration from to , turbidity reduction increases from to with an increase in the floc size from to for NADES treated suspension. The increase in the destabilization degree was associated with an enhancement in the suspension viscosity by more than two folds.
Languageen
PublisherElsevier B.V.
SubjectBentonite
Chlorine compounds
Coagulation
Elasticity
Eutectics
Mixtures
Non Newtonian flow
Non Newtonian liquids
Particle size
Particle size analysis
Shear thinning
Sols
Solvents
Suspensions (fluids)
Turbidity
Viscoelasticity
Yield stress
Bentonite suspensions
Choline chloride
Coagulation-flocculation process
Deep eutectic solvents
Natural deep eutectic solvent
Performance efficiency
Rheological behaviour
Separation behaviors
Separation difficulty
Turbidity reduction
Rheology
TitleInfluence of choline chloride based natural deep eutectic solvent on the separation and rheological behavior of stable bentonite suspension
TypeArticle
Volume Number270
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record