• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation on inlet obstruction in transitional flow regime: Heat transfer augmentation and pressure drop analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Case studies in Thermal Engineering 2022.pdf (4.575Mb)
    Date
    2022-06-30
    Author
    Basma, Souayeh
    Bhattacharyya, Suvanjan
    Hdhiri, Najib
    Alam, Mir Waqas
    Yasin, Essam
    Aamir, Muhammad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Thermohydraulic characteristics of air as the working medium in a circular heated channel fitted with inlet obstruction (ribbed prism) at the inlet is carried out experimentally for transitional flow regime. The ribbed prism is fabricated using aluminum metal. Three non-dimensional parameters clearance ratio (C = 0.4, 0.5 and 0.6) and pitch ratio (e = 0.12, 0.15 and 0.16) were investigated. The Reynolds number (Nu) varied from 500 to 7036 to cover all the flow regimes. Experiments were conducted at two constant heat fluxes of 0.5 kW/m2 and 1 kW/m2. It was found that start and end of transitional flow regime was influenced by insertion of the inlet obstruction at the inlet of the test section. With placement of prism in the channel, the boundaries of transition changes when compared with the plain channel. It is observed that transition starts early and also end early to the transition limit of plain channel. Heat flux shows significant influence on the onset and termination of the transition. At higher heat flux the transition starts later and terminates later when compared with the lower heat flux conditions. For the case of C = 0.6 and e = 0.16, the transition begins Re = 1648 and ends at Re = 3387 for 1 kw/m2 heat flux. The transition of 0.5 kW/m2 of heat flux for C = 0.6 and e = 0.16 begins at Re = 1554 and ends at Re = 3321. Correlations were also developed for predicting the Nusselt number and friction factor and the results are useful to design solar thermal systems and heat exchangers.
    URI
    https://www.sciencedirect.com/science/article/pii/S2214157X22002623
    DOI/handle
    http://dx.doi.org/10.1016/j.csite.2022.102016
    http://hdl.handle.net/10576/30844
    Collections
    • Mathematics, Statistics & Physics [‎792‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video