عرض بسيط للتسجيلة

المؤلفSubramanian, N.
المؤلفElharrouss, O.
المؤلفAl-Maadeed, Somaya
المؤلفChowdhury, M.
تاريخ الإتاحة2022-05-19T10:23:05Z
تاريخ النشر2022
اسم المنشورComputers in Biology and Medicine
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.compbiomed.2022.105233
معرّف المصادر الموحدhttp://hdl.handle.net/10576/31076
الملخصCOVID-19 is a fast-spreading pandemic, and early detection is crucial for stopping the spread of infection. Lung images are used in the detection of coronavirus infection. Chest X-ray (CXR) and computed tomography (CT) images are available for the detection of COVID-19. Deep learning methods have been proven efficient and better performing in many computer vision and medical imaging applications. In the rise of the COVID pandemic, researchers are using deep learning methods to detect coronavirus infection in lung images. In this paper, the currently available deep learning methods that are used to detect coronavirus infection in lung images are surveyed. The available methodologies, public datasets, datasets that are used by each method and evaluation metrics are summarized in this paper to help future researchers. The evaluation metrics that are used by the methods are comprehensively compared.
اللغةen
الناشرElsevier Ltd
الموضوعBiological organs
Computerized tomography
Deep learning
Image classification
Medical imaging
Coronavirus pandemic
Coronaviruses
COVID-19 detection
Detection methods
DL-based COVID-19 detection
Evaluation metrics
Images classification
Learning methods
Lung image classification
Medical images processing
Coronavirus
العنوانA review of deep learning-based detection methods for COVID-19
النوعArticle
رقم المجلد143
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة