عرض بسيط للتسجيلة

المؤلفElharrouss O.
المؤلفAlmaadeed N.
المؤلفAl-Maadeed, Somaya
المؤلفBouridane A.
تاريخ الإتاحة2022-05-19T10:23:08Z
تاريخ النشر2021
اسم المنشورJournal of Supercomputing
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/s11227-020-03409-5
معرّف المصادر الموحدhttp://hdl.handle.net/10576/31099
الملخصPerson re-identification across multiple cameras is an essential task in computer vision applications, particularly tracking the same person in different scenes. Gait recognition, which is the recognition based on the walking style, is mostly used for this purpose due to that human gait has unique characteristics that allow recognizing a person from a distance. However, human recognition via gait technique could be limited with the position of captured images or videos. Hence, this paper proposes a gait recognition approach for person re-identification. The proposed approach starts with estimating the angle of the gait first, and this is then followed with the recognition process, which is performed using convolutional neural networks. Herein, multitask convolutional neural network models and extracted gait energy images (GEIs) are used to estimate the angle and recognize the gait. GEIs are extracted by first detecting the moving objects, using background subtraction techniques. Training and testing phases are applied to the following three recognized datasets: CASIA-(B), OU-ISIR, and OU-MVLP. The proposed method is evaluated for background modeling using the Scene Background Modeling and Initialization (SBI) dataset. The proposed gait recognition method showed an accuracy of more than 98% for almost all datasets. Results of the proposed approach showed higher accuracy compared to obtained results of other methods result for CASIA-(B) and OU-MVLP and form the best results for the OU-ISIR dataset.
راعي المشروعThis publication was made by NPRP Grant # NPRP8-140-2-065 from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرSpringer
الموضوعConvolution
Gait analysis
Object detection
Background subtraction techniques
Computer vision applications
Gait energy images
Human recognition
Multiple cameras
Person re identifications
Recognition process
Training and testing
Convolutional neural networks
العنوانGait recognition for person re-identification
النوعArticle
الصفحات3653-3672
رقم العدد4
رقم المجلد77
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة