Classification of EEG signals for detection of epileptic seizure activities based on LBP descriptor of time-frequency images
المؤلف | Boubchir L. |
المؤلف | Al-Maadeed, Somaya |
المؤلف | Bouridane A. |
المؤلف | Cherif A.A. |
تاريخ الإتاحة | 2022-05-19T10:23:12Z |
تاريخ النشر | 2015 |
اسم المنشور | Proceedings - International Conference on Image Processing, ICIP |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ICIP.2015.7351507 |
الملخص | This paper presents novel time-frequency (t-f) feature extraction approach for the classification of EEG signals for Epileptic seizure activities detection. The proposed features are based on Local Binary Patterns (LBP) descriptor extracted from t-f representation of EEG signals processed as a textured image. Compared to most previous t-f approaches were based only on features derived from the instantaneous frequency and the energies of EEG signals generated from different spectral sub-bands, the proposed t-f features are capable to describe visually the epileptic seizure activity patterns observed in t-f image of EEG signals. The results obtained on real EEG data show that the use of t-f LBP descriptor-based features achieve an overall classification accuracy up to 99% for 150 EEG signals using 2-class SVM classifier. This is confirmed by ROC curve analysis. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | EEG LBP descriptor seizure detection time-frequency feature extraction Time-frequency image |
النوع | Conference |
الصفحات | 3758-3762 |
رقم المجلد | 2015-December |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]