• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FPGA Implementation of Orthogonal Matching Pursuit for Compressive Sensing Reconstruction

    Thumbnail
    Date
    2015
    Author
    Rabah H.
    Amira A.
    Mohanty B.K.
    Al-Maadeed, Somaya
    Meher P.K.
    Metadata
    Show full item record
    Abstract
    In this paper, we present a novel architecture based on field-programmable gate arrays (FPGAs) for the reconstruction of compressively sensed signal using the orthogonal matching pursuit (OMP) algorithm. We have analyzed the computational complexities and data dependence between different stages of OMP algorithm to design its architecture that provides higher throughput with less area consumption. Since the solution of least square problem involves a large part of the overall computation time, we have suggested a parallel low-complexity architecture for the solution of the linear system. We have further modeled the proposed design using Simulink and carried out the implementation on FPGA using Xilinx system generator tool. We have presented here a methodology to optimize both area and execution time in Simulink environment. The execution time of the proposed design is reduced by maximizing parallelism by appropriate level of unfolding, while the FPGA resources are reduced by sharing the hardware for matrix-vector multiplication across the data-dependent sections of the algorithm. The hardware implementation on the Virtex6 FPGA provides significantly superior performance in terms of resource utilization measured in the number of occupied slices, and maximum usable frequency compared with the existing implementations. Compared with the existing similar design, the proposed structure involves 328 more DSP48s, but it involves 25,802 less slices and 1.85 times less computation time for signal reconstruction with N = 1024, K = 256, and m = 36, where N is the number of samples, K is the size of the measurement vector, and m is the sparsity. It also provides a higher peak signal-to-noise ratio value of 38.9 dB with a reconstruction time of 0.34 s, which is twice faster than the existing design. In addition, we have presented a performance metric to implement the OMP algorithm in resource constrained FPGA for the better quality of signal reconstruction.
    DOI/handle
    http://dx.doi.org/10.1109/TVLSI.2014.2358716
    http://hdl.handle.net/10576/31142
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video