• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T1-weighted magnetic resonance imaging

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Qin, Jing
    Liang, Guohai
    Feng, Bingxi
    Wang, Gen
    Wu, Na
    Deng, Yonghui
    Elzatahry, Ahmed A.
    Alghamdi, Abdulaziz
    Zhao, Yongxi
    Wei, Jing
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Plant polyphenol-based coordination polymers (CPs) with ultra-small particle size and tailorable compositions are highly desired in biomedical applications, but their synthesis is still challenging due to the sophisticated coordination assembly process and unavoidable self-oxidation polymerization of polyphenol. Herein, a general ligand covalent-modification mediated coordination assembly strategy is proposed for the synthesis of water-dispersible CPs with tunable metal species (e.g., Gd, Cu, Ni, Zn, Fe) and ultra-small diameter (8.6–37.8 nm) using nontoxic plant polyphenol (e.g., tannic acid, gallic acid) as a polymerizable ligand. Polyphenol molecules react with formaldehyde firstly, which can effectively retard the oxidation induced self-polymerization of polyphenol and lead to the formation of metal ions containing CPs colloidal nanoparticles. These ultrafine nanoparticles with stably chelated metal ions are highly water dispersible and thus advantageous for bioimaging. As an example, ultra-small Gd contained CPs exhibit higher longitudinal relaxivity (r1 = 25.5 L mmol−1 s−1) value with low r2/r1 (1.19) than clinically used Magnevist (Gd-DTPA, r1 = 3.7 L mmol−1 s−1). Due to the enhanced permeability and retention effect, they can be further used as a positive contrast agent for T1-weighted MR imaging of tumour.
    DOI/handle
    http://dx.doi.org/10.1016/j.cclet.2020.05.021
    http://hdl.handle.net/10576/31353
    Collections
    • Materials Science & Technology [‎317‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video