• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates

    Thumbnail
    Date
    2015
    Author
    Fang, Y.
    Lv, Y.
    Tang, J.
    Wu, H.
    Jia, D.
    Feng, D.
    Kong, B.
    Wang, Y.
    Elzatahry, A.A.
    Al-Dahyan, D.
    Zhang, Q.
    Zheng, G.
    Zhao, D.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Single-layered two-dimensional (2D) ultrathin mesoporous polymer/carbon films are grown by self-assembly of monomicelles at the interfaces of various substrates, which is a general and common modification strategy. These unconventional 2D mesoporous films possess only a single layer of mesopores, while the size of the thin films can grow up to inch size in the plane. Free-standing transparent mesoporous carbon ultrathin films, together with the ordered mesoporous structure on the substrates of different compositions (e.g. metal oxides, carbon) and morphologies (e.g. nanocubes, nanodiscs, flexible and patterned substrates) have been obtained. This strategy not only affords controllable hierarchical porous nanostructures, but also appends the easily modified and multifunctional properties of carbon to the primary substrate. By using this method, we have fabricated Fe2O3-mesoporous carbon photoelectrochemical biosensors, which show excellent sensitivity and selectivity for glutathione. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    DOI/handle
    http://dx.doi.org/10.1002/anie.201502845
    http://hdl.handle.net/10576/31379
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video