The effect of aging on the bone healing properties of blood plasma
Author | Al-Hamed F.S. |
Author | Rodan R. |
Author | Ramirez-Garcialuna J.L. |
Author | Elkashty O. |
Author | Al-Shahrani N. |
Author | Tran S.D. |
Author | Lordkipanidz� M. |
Author | Kaartinen M. |
Author | Badran Z. |
Author | Tamimi F. |
Available date | 2022-05-31T19:01:20Z |
Publication Date | 2021 |
Publication Name | Injury |
Resource | Scopus |
Identifier | http://dx.doi.org/10.1016/j.injury.2021.05.001 |
Abstract | Objectives: Age-related changes in blood composition have been found to affect overall health. Thus, this study aimed to understand the effect of these changes on bone healing by assessing how plasma derived from young and old rats affect bone healing using a rat model. Methods:. Blood plasma was collected from 6-month and 24-month old rats. Differences in elemental composition and metabolome were assessed using optical emission spectrometry and liquid mass spectrometry, respectively. Bilateral tibial bone defects were created in eight rats. Young plasma was randomly applied to one defect, while aged plasma was applied to the contralateral one. Rats were euthanized after two weeks, and their tibiae were analyzed using micro-CT and histology. The proteome of bone marrow was analyzed in an additional group of three rats. Results: Bone-defects treated with aged-plasma were significantly bigger in size and presented lower bone volume/tissue volume compared to defects treated with young-plasma. Histomorphometric analysis showed fewer mast cells, macrophages, and lymphocytes in defects treated with old versus young plasma. The proteome analysis showed that young plasma upregulated pathways required for bone healing (e.g. RUNX2, platelet signaling, and crosslinking of collagen fibrils) whereas old plasma upregulated pathways, involved in disease and inflammation (e.g. IL-7, IL-15, IL-20, and GM-CSF signaling). Plasma derived from old rats presented higher concentrations of iron, phosphorous, and nucleotide metabolites as well as lower concentrations of platelets, citric acid cycle, and pentose phosphate pathway metabolites compared to plasma derived from young rats. Conclusion: bone defects treated with plasma-derived from young rats showed better healing compared to defects treated with plasma-derived from old rats. The application of young and old plasmas has different effects on the proteome of bone defects. |
Language | en |
Publisher | Elsevier Ltd |
Subject | collagen granulocyte macrophage colony stimulating factor interleukin 15 interleukin 20 interleukin 7 iron nucleotide phosphorus proteome transcription factor RUNX2 aged aging animal experiment animal model animal tissue Article bioinformatics bone defect bone marrow bone volume cell infiltration citric acid cycle collagen fibril concentration (parameter) controlled study cross linking data analysis software electrospray mass spectrometry elemental analysis female fracture healing GM-CSF signaling histopathology immune response inductively coupled plasma optical emission spectrometry inflammation liquid chromatography-mass spectrometry lymphocyte macrophage mass fragmentography mass spectrometry mast cell metabolome metabolomics micro-computed tomography morphometry nonhuman pentose phosphate cycle plasma protein expression level proteomics rat signal transduction spectroscopy thrombocyte tibia upregulation aging animal bone regeneration plasma wound healing Aging Animals Bone Regeneration Plasma Rats Tibia Wound Healing |
Type | Article |
Pagination | 1697-1708 |
Issue Number | 7 |
Volume Number | 52 |
Check access options
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Dental Medicine Research [338 items ]