Monitoring SEIRD model parameters using MEWMA for the COVID-19 pandemic with application to the state of Qatar
Date
2021-01-01Author
Boone, Edward L.Abdel-Salam, Abdel Salam G.
Sahoo, Indranil
Ghanam, Ryad
Chen, Xi
Hanif, Aiman
...show more authors ...show less authors
Metadata
Show full item recordAbstract
During the current COVID-19 pandemic, decision-makers are tasked with implementing and evaluating strategies for both treatment and disease prevention. In order to make effective decisions, they need to simultaneously monitor various attributes of the pandemic such as transmission rate and infection rate for disease prevention, recovery rate which indicates treatment effectiveness as well as the mortality rate and others. This work presents a technique for monitoring the pandemic by employing an Susceptible, Exposed, Infected, Recovered, Death model regularly estimated by an augmented particle Markov chain Monte Carlo scheme in which the posterior distribution samples are monitored via Multivariate Exponentially Weighted Average process monitoring. This is illustrated on the COVID-19 data for the State of Qatar.
Collections
- COVID-19 Research [835 items ]
- Mathematics, Statistics & Physics [740 items ]