Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode
المؤلف | Gunda, Mohanakrishna |
المؤلف | Abu Reesh, Ibrahim M. |
المؤلف | Vanbroekhoven, Karolien |
المؤلف | Pant, Deepak |
تاريخ الإتاحة | 2022-09-05T10:06:16Z |
تاريخ النشر | 2020-05-01 |
اسم المنشور | Science of The Total Environment |
المعرّف | http://dx.doi.org/10.1016/j.scitotenv.2020.137003 |
الاقتباس | Mohanakrishna, G., Reesh, I. M. A., Vanbroekhoven, K., & Pant, D. (2020). Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode. Science of The Total Environment, 715, 137003. |
الرقم المعياري الدولي للكتاب | 00489697 |
الملخص | An enrichment methodology was developed for a homoacetogenic biocathode that is able to function at high concentrations of bicarbonates for the microbial electrosynthesis (MES) of acetate from carbon dioxide. The study was performed in two stages; enrichment of consortia in serum bottles and the development of a biocathode in MES. A homoacetogenic consortium was sequentially grown under increasing concentrations of bicarbonate, in serum bottles, at room temperature. The acetate production rate was found to increase with the increase in the bicarbonate concentration and evidenced a maximum production rate of 260 mg/L d−1 (15 g HCO3−/L). On the contrary, carbon conversion efficiency decreased with the increase in the bicarbonate concentration, which evidenced a maximum at 2.5 g HCO3−/L (90.16%). Following a further increase in the bicarbonate concentration up to 20 g HCO3−/L, a visible inhibition was registered with respect to the acetate production rate and the carbon conversion efficiency. Well adapted biomass from 15 g HCO3−/L was used to develop biocathodic catalyst for MES. An effective biocathode was developed after 4 cycles of operation, during which acetate production was improved gradually, evidencing a maximum production rate of 24.53 mg acetate L−1 d−1 (carbon conversion efficiency, 47.72%). Compared to the enrichment stage, the carbon conversion efficiency and the rate of acetate production in MES were found to be low. The production of acetate induced a change in the catholyte pH, from neutral conditions towards acidic conditions. |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | Microbial electrosynthesis (MES) Carbon concentration Bicarbonates Catholyte pH Biocathode |
النوع | Article |
رقم المجلد | 715 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكيميائية [1174 items ]