• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlling the Interfacial Charge Polarization of MOF-Derived 0D–2D vdW Architectures as a Unique Strategy for Bifunctional Oxygen Electrocatalysis

    Thumbnail
    Date
    2022-01-26
    Author
    Ahsan, Md Ariful
    He, Tianwei
    Eid, Kamel
    Abdullah, Aboubakr M.
    Sanad, Mohamed Fathi
    Aldalbahi, Ali
    Alvarado-Tenorio, Bonifacio
    Du, Aijun
    Puente Santiago, Alain R.
    Noveron, Juan C.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal–organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO2 nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO2 nanohybrids. X-ray photoelectron spectroscopy (XPS) and theoretical studies revealed the key role of the synergistic couple effect of boron (B) and nitrogen (N) in interfacial electronic polarization. The BCN/ZrO2 nanohybrid showed excellent bifunctional electrocatalytic activity, delivering an overpotential (η10) of 301 mV to reach a current density of 10 mA–cm–2 for the OER process and a half-wave potential (E1/2) of 0.85 V vs reversible hydrogen electrode (RHE) for the ORR process, which are comparable to the state-of-the-art LD nanohybrids. Furthermore, BCN/ZrO2 also showed competitive performances for water-splitting and zinc–air battery devices. This work establishes a new route to fabricate highly efficient multifunctional electrocatalysts by tuning the electronic polarization properties of 0D–2D electrochemical interfaces.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123359338&origin=inward
    DOI/handle
    http://dx.doi.org/10.1021/acsami.1c17283
    http://hdl.handle.net/10576/34173
    Collections
    • GPC Research [‎520‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video