• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Agent Reinforcement Learning for Network Selection and Resource Allocation in Heterogeneous Multi-RAT Networks

    Thumbnail
    View/Open
    Multi-Agent Reinforcement Learning for Network Selection and Resource Allocation in Heterogeneous Multi-RAT Networks.pdf (2.017Mb)
    Date
    2022-06-01
    Author
    Allahham, Mhd Saria
    Abdellatif, Alaa Awad
    Mhaisen, Naram
    Mohamed, Amr
    Erbad, Aiman
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The rapid production of mobile devices along with the wireless applications boom is continuing to evolve daily. This motivates the exploitation of wireless spectrum using multiple Radio Access Technologies (multi-RAT) and developing innovative network selection techniques to cope with such intensive demand while improving Quality of Service (QoS). Thus, we propose a distributed framework for dynamic network selection at the edge level, and resource allocation at the Radio Access Network (RAN) level, while taking into consideration diverse applications' characteristics. In particular, our framework employs a deep Multi-Agent Reinforcement Learning (DMARL) algorithm, that aims to maximize the edge nodes' quality of experience while extending the battery lifetime of the nodes and leveraging adaptive compression schemes. Indeed, our framework enables data transfer from the network's edge nodes, with multi-RAT capabilities, to the cloud in a cost and energy-efficient manner, while maintaining QoS requirements of different supported applications. Our results depict that our solution outperforms state-of-the-art techniques of network selection in terms of energy consumption, latency, and cost.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125734785&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TCCN.2022.3155727
    http://hdl.handle.net/10576/34763
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video