Robust Decentralized Federated Learning Using Collaborative Decisions
المؤلف | Gouissem, A. |
المؤلف | Abualsaud, K. |
المؤلف | Yaacoub, E. |
المؤلف | Khattab, T. |
المؤلف | Guizani, M. |
تاريخ الإتاحة | 2022-10-12T17:06:02Z |
تاريخ النشر | 2022-01-01 |
اسم المنشور | 2022 International Wireless Communications and Mobile Computing, IWCMC 2022 |
المعرّف | http://dx.doi.org/10.1109/IWCMC55113.2022.9824826 |
الاقتباس | Gouissem, A., Abualsaud, K., Yaacoub, E., Khattab, T., & Guizani, M. (2022, May). Robust Decentralized Federated Learning Using Collaborative Decisions. In 2022 International Wireless Communications and Mobile Computing (IWCMC) (pp. 254-258). IEEE. |
الترقيم الدولي الموحد للكتاب | 9781665467490 |
الملخص | Federated Learning (FL) has attracted a lot of attention in numerous applications due to recent data privacy regulations and increased awareness about data handling issues, combined with the ever-increasing big-data sizes. This paper proposes a server-less, robust FL training mechanism that allows any set of participating data-owners to train a neural network (NN) model collaboratively without the assistance of any central node and while being resilient to Byzantine attacks. The proposed approach makes use of a dual-way update mechanism to allow each node to take a model forwarding decision towards a global collaborative decision of isolating any malicious updates. The efficiency of the proposed approach in detecting cardiac irregularities is verified using simulation results conducted based on the Physikalisch-Technische Bundesanstalt Database electro-cardiogram (PTBDB ECG) dataset. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Byzantine attacks Decentralized Networks Distributed Learning E-health Federated Learning |
النوع | Conference |
الصفحات | 254-258 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2409 items ]