• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Experimental Study of Two-way Ranging Optimization in UWB-based Simultaneous Localization and Wall-Mapping Systems

    Thumbnail
    View/Open
    An Experimental Study of Two-way Ranging Optimization in UWB-based Simultaneous Localization and Wall-Mapping Systems.pdf (1.372Mb)
    Date
    2022-01-01
    Author
    Li, Kai
    Ni, Wei
    Wei, Bo
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    In this paper, we propose a new ultra-wideband (UWB)-based simultaneous localization and wall-mapping (SLAM) system, which adopts two-way ranging optimization on UWB anchor and tag nodes to track the target's real-time movement in an unknown area. The proposed UWB-based SLAM system captures time difference of arrival (TDoA) of the anchor nodes' signals over a line-of-sight propagation path and reflected paths. The real-time location of the UWB tag is estimated according to the real-time TDoA measurements. To minimize the estimation error resulting from background noise in the two-way ranging, a Least Squares Method is implemented to minimize the estimation error for the localization of a static target, while Kalman Filter is applied for the localization of a mobile target. An experimental testbed is built based on off-the-shelf UWB hardware. Experiments validate that a reflector, e.g., a wall, and the UWB tag can be located according to the two-way ranging measurement. The localization accuracy of the proposed SLAM system is also evaluated, where the difference between the estimated location and the ground truth trajectory is less than 1 meter.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135350116&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC55113.2022.9825332
    http://hdl.handle.net/10576/35152
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video