عرض بسيط للتسجيلة

المؤلفAnbalagan, Sudha
المؤلفBashir, Ali Kashif
المؤلفRaja, Gunasekaran
المؤلفDhanasekaran, Priyanka
المؤلفVijayaraghavan, Geetha
المؤلفTariq, Usman
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-10-30T08:59:23Z
تاريخ النشر2021-09-15
اسم المنشورIEEE Internet of Things Journal
المعرّفhttp://dx.doi.org/10.1109/JIOT.2021.3069642
الاقتباسAnbalagan, S., Bashir, A. K., Raja, G., Dhanasekaran, P., Vijayaraghavan, G., Tariq, U., & Guizani, M. (2021). Machine-learning-based efficient and secure RSU placement mechanism for software-defined-IoV. IEEE Internet of Things Journal, 8(18), 13950-13957.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103773575&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35583
الملخصThe massive increase in computing and network capabilities has resulted in a paradigm shift from vehicular networks to the Internet of Vehicles (IoV). Owing to the dynamic and heterogeneous nature of IoV, it requires efficient resource management using smart technologies, such as software-defined network (SDN), machine learning (ML), and so on. Roadside units (RSUs) in software-defined-IoV (SD-IoV) networks are responsible for network efficiency and offer several safety functions. However, it is not viable to deploy enough RSUs, and also the existing RSU placement lacks universal coverage within a region. Furthermore, any disruption in network performance or security impacts vehicular activities severely. Thus, this work aims to improve network efficiency through optimal RSU placement and enhance security with a malicious IoV detection algorithm in an SD-IoV network. Therefore, the memetic-based RSU (M-RSU) placement algorithm is proposed to reduce communication delay and increase the coverage area among IoV devices through an optimum RSU deployment. Besides the M-RSU algorithm, the work also proposes a distributed ML (DML)-based intrusion detection system (IDS) that prevents the SD-IoV network from disastrous security failures. The simulation results show that M-RSU placement reduces the transmission delay. The DML-based IDS detects the malicious IoV with an accuracy of 89.82% compared to traditional ML algorithms.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعInternet of Vehicles (IoV)
intrusion detection system (IDS)
machine learning (ML)
roadside unit (RSU) placement
software-defined network (SDN)
العنوانMachine-Learning-Based Efficient and Secure RSU Placement Mechanism for Software-Defined-IoV
النوعArticle
الصفحات13950-13957
رقم العدد18
رقم المجلد8
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة