• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial Intelligence Empowered QoS-Oriented Network Association for Next-Generation Mobile Networks

    Thumbnail
    Date
    2021-09-01
    Author
    Yuan, Xin
    Yao, Haipeng
    Wang, Jingjing
    Mai, Tianle
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    The increasing complexity and dynamics of 5G mobile networks have brought revolutionary changes in its modeling and control, where efficient routing and resource allocation strategies become beneficial. Software-Defined Network (SDN) makes it possible to achieve the automatic management of network resources. Relying on the powerful decision-making capability of SDNs, network association can be flexibly implemented for adapting to the dynamic of the real-time network status. In this paper, we first construct a jitter graph-based network model as well as a Poisson process-based traffic model in the context of 5G mobile networks. Second, we solve the problem of QoS routing with resource allocation based on queueing theory using a low computational complexity greedy algorithm, which takes finding a feasible path set as the main task and resource allocation as the auxiliary task. Finally, we design a QoS-oriented adaptive routing scheme based on Deep Reinforcement Learning (DRL) SPACE, which is a DRL architecture with parameterized action space, in order to find an optimal path from the source to the destination. To validate the feasibility of the greedy QoS routing strategy with resource allocation, we make a numerical packet-level simulation to model a M/M/C/N queuing system. Moreover, extensive simulation results demonstrate that our proposed routing strategy is able to improve the traffic's QoS metrics, such as the packet loss ratio and queueing delay.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102677076&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TCCN.2021.3065463
    http://hdl.handle.net/10576/35604
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video