• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RR-LADP: A Privacy-Enhanced Federated Learning Scheme for Internet of Everything

    Thumbnail
    Date
    2021-09-01
    Author
    Li, Zerui
    Tian, Yuchen
    Zhang, Weizhe
    Liao, Qing
    Liu, Yang
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    While the widespread use of ubiquitously connected devices in Internet of Everything (IoE) offers enormous benefits, it also raises serious privacy concerns. Federated learning, as one of the promising solutions to alleviate such problems, is considered as capable of performing data training without exposing raw data that kept by multiple devices. However, either malicious attackers or untrusted servers can deduce users' privacy from the local updates of each device. Previous studies mainly focus on privacy-preserving approaches inside the servers, which require the framework to be built on trusted servers. In this article, we propose a privacy-enhanced federated learning scheme for IoE. Two mechanisms are adopted in our approach, namely the randomized response (RR) mechanism and the local adaptive differential privacy (LADP) mechanism. RR is adopted to prevent the server from knowing whose updates are collected in each round. LADP enables devices to add noise adaptively to its local updates before submitting them to the server. Experiments demonstrate the feasibility and effectiveness of our approach.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100934565&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/MCE.2021.3059958
    http://hdl.handle.net/10576/35605
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video