Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach
المؤلف | Shu, Jiangang |
المؤلف | Zhou, Lei |
المؤلف | Zhang, Weizhe |
المؤلف | Du, Xiaojiang |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2022-10-31T06:25:03Z |
تاريخ النشر | 2021-07-01 |
اسم المنشور | IEEE Transactions on Intelligent Transportation Systems |
المعرّف | http://dx.doi.org/10.1109/TITS.2020.3027390 |
الاقتباس | Shu, J., Zhou, L., Zhang, W., Du, X., & Guizani, M. (2020). Collaborative intrusion detection for VANETs: A deep learning-based distributed SDN approach. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4519-4530. |
الرقم المعياري الدولي للكتاب | 15249050 |
الملخص | Vehicular Ad hoc Network (VANET) is an enabling technology to provide a variety of convenient services in intelligent transportation systems, and yet vulnerable to various intrusion attacks. Intrusion detection systems (IDSs) can mitigate the security threats by detecting abnormal network behaviours. However, existing IDS solutions are limited to detect abnormal network behaviors under local sub-networks rather than the entire VANET. To address this problem, we utilize deep learning with generative adversarial networks and explore distributed SDN to design a collaborative intrusion detection system (CIDS) for VANETs, which enables multiple SDN controllers jointly train a global intrusion detection model for the entire network without directly exchanging their sub-network flows. We prove the correctness of our CIDS in both IID (Independent Identically Distribution) and non-IID situations, and also evaluate its performance through both theoretical analysis and experimental evaluation on a real-world dataset. Detailed experimental results validate that our CIDS is efficient and effective in intrusion detection for VANETs. |
راعي المشروع | This work was supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2019B010136001, in part by the Natural Science Foundation of China under Grant 61732022 and Grant 61672195, and in part by the Peng Cheng Laboratory Project of Guangdong Province under Grant PCL2018KP004 and Grant PCL2018KP005. The Associate Editor for this article was N. Kumar. (Corresponding author: Weizhe Zhang.) Jiangang Shu is with the Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518000, China (e-mail: shujg@pcl.ac.cn). |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Collaborative intrusion detection deep learning distributed SDN generative adversarial networks intelligent transportation |
النوع | Article |
الصفحات | 4519-4530 |
رقم العدد | 7 |
رقم المجلد | 22 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]