• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcement Learning Power Control Algorithm Based on Graph Signal Processing for Ultra-Dense Mobile Networks

    Thumbnail
    Date
    2021-07-01
    Author
    Li, Yujie
    Tang, Zhoujin
    Lin, Zhijian
    Gong, Yanfei
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ultra-dense mobile networks (UDMNs) represent a promising technology for improving the network performance and providing the ubiquitous network accessibility in the beyond 5 G (B5G) mobile networks. Heterogenous densely deployed networks can dynamically offer high spectrum efficiency and enhance frequency reuse, which ultimately improves quality of service (QoS) and the user experience. However, mass inter-or intra-cell interference generated from overlap between small cells greatly limits network performance, especially when there is mobility between UEs and access points (APs). Even so, when network density increases, the complexity of conventional allocation methods can increase also. In this paper, we investigate a power control of downlink (DL) connection in the UNMNs with different types of APs. We propose a reinforcement learning (RL) power allocation algorithm based on graph signal processing (GSP) for ultra-dense mobile networks. Firstly, we construct a realistic system model under ultra-dense mobile networking, which includes the system channel mode and instantaneous rate. Then we employ a GSP tool to analyze network interference, the interference analysis results for the entire network are obtained to determine optimal RL power allocation. Finally, simulation results indicate that the proposed RL power control algorithm outperforms baseline algorithms when applied to a ultra-dense mobile networks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099725171&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3051660
    http://hdl.handle.net/10576/35620
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video