• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DCNN-GA: A Deep Neural Net Architecture for Navigation of UAV in Indoor Environment

    Thumbnail
    Date
    2021-03-15
    Author
    Chhikara, Prateek
    Tekchandani, Rajkumar
    Kumar, Neeraj
    Chamola, Vinay
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    The applications of unmanned aerial vehicles (UAVs) in military, intelligent transportation, agriculture, rescue operations, natural environment mapping, and many other allied domains has increased exponentially during the past few years. Some of the use cases of their applications range from aerial surveillance, data retrieval to their use in real-Time communicative networks. Though UAVs were traditionally used only outdoors, many of its indoor applications like for rescue operations, inventory tracking in warehouses, etc., have recently emerged and these use cases are being actively explored. One of the major challenges for indoor drone applications is navigation and obstacle avoidance. Due to indoor operations, the global positioning system fails in accurate localization and navigation. To address this issue, we introduce a scheme that facilitates the autonomous navigation of UAVs (which have an onboard camera) in the indoor corridors of a building using deep-neural-networks-based processing of images. For a deep neural network, the selection of a good combination of hyperparameters for a better prediction is a complicated task. In this article, the hyperparameters tuning of a convolutional neural network is achieved by using genetic algorithms. The proposed architecture (DCNN-GA) is compared with state-of-The-Art ImageNet models. The experimental results show the minimum loss and high performance of the proposed algorithm.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102382852&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3027095
    http://hdl.handle.net/10576/35885
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video