عرض بسيط للتسجيلة

المؤلفChen, Yuwen
المؤلفSong, Bin
المؤلفZeng, Yuan
المؤلفDu, Xiaojiang
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-08T09:48:11Z
تاريخ النشر2021-03-01
اسم المنشورApplied Soft Computing
المعرّفhttp://dx.doi.org/10.1016/j.asoc.2020.106907
الاقتباسChen, Y., Song, B., Zeng, Y., Du, X., & Guizani, M. (2021). Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation. Applied Soft Computing, 100, 106907.‏
الرقم المعياري الدولي للكتاب15684946
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097210098&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35927
الملخصIn the intelligent traffic transportation, the security and stability are vital for the sustainable transportation and efficient logistics. The fault diagnosis on the catenary system is crucial for the railway transportation. For purpose of improving the detection capability for the faulted current-carrying ring and maintaining the efficiency of the railway system, a fault diagnosis method for the current-carrying ring based on an improved RetinaNet model with the spatial attention map and channel weight map is proposed. The local and global features are utilized respectively. The spatial attention maps are embedded into the original convolutional neural network to emphasize the interested local features and weaken the influence of other objects and background. The channel weight maps are introduced into the feature pyramid network of detection network to weight the multi-scale feature maps in channels. The representative global features are focused and unnecessary features are suppressed. The experimental results indicate that the proposed method has increased fault diagnosis accuracy for faulted current-carrying rings compared with the original detection network based on different backbones. It can be used in improving efficiency and safety of railway transport system.
راعي المشروعThis work has been supported by the National Natural Science Foundation of China (Nos. 61772387 , 61802296 ), the Fundamental Research Funds of Ministry of Education and China Mobile ( MCM20170202 ), the National Natural Science Foundation of Shaanxi Province (Grant Nos. 2019ZDLGY03-03 , 2019JQ-375 ) and also supported by the ISN State Key Laboratory .
اللغةen
الناشرElsevier Ltd
الموضوعCatenary system
Deep learning
Fault diagnosis
Railway transport system
العنوانFault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation
النوعArticle
رقم المجلد100
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة