• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-Efficient Device Assignment and Task Allocation in Multi-Orchestrator Mobile Edge Learning

    Thumbnail
    Date
    2021-01-01
    Author
    Allahham, Mhd Saria
    Sorour, Sameh
    Mohamed, Amr
    Erbad, Aiman
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Mobile Edge Learning (MEL) is a decentralized learning paradigm that enables resource-constrained IoT devices to either learn a shared model without sharing the data, or to distribute the learning task with the data to other IoT devices and utilize their available resources. In the former case, IoT devices (a.k.a learners) need to be assigned an orchestrator to facilitate the learning and models' aggregation from different learners. Whereas in the latter case, IoT devices act as orchestrators and look for learners with available resources to distribute the learning task to. However, the coexistence of multiple learning problems in an environment with limited resources poses the learners-orchestrator assignment problem. To this end, we aim to develop an energy-efficient learner assignment and task allocation scheme, in which each orchestrator gets assigned a group of learners based on their communication channel qualities and computational resources. We formulate and solve a multi-objective optimization problem to minimize the total energy consumption and maximize the learning accuracy. To reduce the solution complexity, we also propose a lightweight heuristic algorithm that can achieve near-optimal performance. The conducted simulations show that our proposed approaches can execute multiple learning tasks efficiently and significantly reduce energy consumption compared to current state-of-art methods.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127259900&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/GLOBECOM46510.2021.9686019
    http://hdl.handle.net/10576/36057
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video