• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Patient-Driven Network Selection in multi-RAT Health Systems Using Deep Reinforcement Learning

    Thumbnail
    Date
    2021-01-01
    Author
    Dawoud, Heba D.M.
    Allahham, Mhd Saria
    Abdellatif, Alaa Awad
    Mohamed, Amr
    Erbad, Aiman
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The recent pandemic along with the rapid increase in the number of patients that require continuous remote monitoring imposes several challenges to support the high quality of services (QoS) in remote health applications. Remote-health (r-health) systems typically demand intense data collection from different locations within a strict time constraint to support sustainable health services. On the contrary, the end-users with mobile devices have limited batteries that need to run for a long time, while continuously acquiring and transmitting health-related information. Thus, this paper proposes an adaptive deep reinforcement learning (DRL) framework for network selection over heteroge-neous r-health systems to enable continuous remote monitoring for patients with chronic diseases. The proposed framework allows for selecting the optimal network(s) that maximizes the accumulative reward of the patients while considering the patients' state. Moreover, it adopts an adaptive compression scheme at the patient level to further optimize the energy consumption, cost, and latency. Our results depict that the proposed framework outperforms the state-of-the-art techniques in terms of battery lifetime and reward maximization.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127244609&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685304
    http://hdl.handle.net/10576/36070
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video