Haddle: A framework for investigating data leakage attacks in hadoop
المؤلف | Gao, Yun |
المؤلف | Fu, Xiao |
المؤلف | Luo, Bin |
المؤلف | Du, Xiaojiang |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2022-11-10T09:47:25Z |
تاريخ النشر | 2015 |
اسم المنشور | 2015 IEEE Global Communications Conference, GLOBECOM 2015 |
المصدر | Scopus |
المصدر | 2-s2.0-84964906368 |
الملخص | Nowadays Hadoop is popular among businesses and individuals for its low costs, convenience, and fast speed. However, this also makes it the goal of data leakage attacks as sensitive data stored with an HDFS infrastructure grows rapidly. Therefore, it is important to investigate such attacks in Hadoop. Several works have been done on improving the security of Hadoop, but hardly any have been done on data leakage investigation. This paper presents a typical data leakage attack scene in Hadoop and proposes Haddle (Hadoop Data Leakage Explorer), a forensic framework composed of automatic analytical methods and on-demand data collection based on two stages. With the assistance of Haddle, investigators can find the stolen data, find the perpetrator who stole the data, and reconstruct the crime scene. Also, Haddle can help improve the audit mechanism of Hadoop. 2015 IEEE. |
راعي المشروع | This work is supported by the National Natural Science Foundation of China (61100198/F0207, 61100197/F0207) |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Cloud computing Data leakage Forensics Hadoop HDFS |
النوع | Conference Paper |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]