عرض بسيط للتسجيلة

المؤلفZheng, Jingjing
المؤلفLi, Kai
المؤلفTovar, Eduardo
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-12T12:21:51Z
تاريخ النشر2021-01-01
اسم المنشور2021 International Wireless Communications and Mobile Computing, IWCMC 2021
المعرّفhttp://dx.doi.org/10.1109/IWCMC51323.2021.9498853
الاقتباسZheng, J., Li, K., Tovar, E., & Guizani, M. (2021, June). Federated learning for energy-balanced client selection in mobile edge computing. In 2021 International Wireless Communications and Mobile Computing (IWCMC) (pp. 1942-1947). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728186160
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125034347&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36234
الملخصMobile edge computing (MEC) has been considered as a promising technology to provide seamless integration of multiple application services. Federated learning (FL) is carried out at edge clients in MEC for privacy-preserving training of data processing models. Despite that the edge clients with small data payloads consume less energy on FL training, the small data payload gives rise to a low learning accuracy due to insufficient input to the FL training. Inadequate selection of the edge clients can result in a large energy consumption at the edge clients, or a low learning accuracy of the FL training. In this paper, a new FL-based client selection optimization is proposed to balance the trade-off between energy consumption of the edge clients and the learning accuracy of FL. We first show that this optimization problem is NP-complete. Next, we propose a FL-based energy-accuracy balancing heuristic algorithm to approximate the optimal client selection in polynomial time. The numerical results show the advantage of our proposed algorithm.
راعي المشروعThis work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (CEC/04234); also by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) through the European Regional Development Fund (ERDF) and by national funds through the FCT, within project POCI-01-0145-FEDER-029074 (ARNET).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعClient selection
Federated learning
Heuristic algorithm
Mobile edge computing
العنوانFederated Learning for Energy-balanced Client Selection in Mobile Edge Computing
النوعConference Paper
الصفحات1942-1947
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة