• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    NOMA-Based Coordinated Direct and Relay Transmission with a Half-Duplex/ Full-Duplex Relay

    Thumbnail
    Date
    2020-11-01
    Author
    Pei, Xinyue
    Yu, Hua
    Wen, Miaowen
    Mumtaz, Shahid
    Al Otaibi, Sattam
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this article, we propose a downlink non-orthogonal multiple access (NOMA) based coordinated direct and relay system with one cell-center user and multiple cell-edge users, where a decode-and-forward (DF) relay bridges the connection between the base station and the cell-edge users. Both full-duplex (FD) and half-duplex (HD) protocols are considered for the relay. We assume that the performance of the cell-edge users is subjected to the relay, and the cancellation of the mutual interference between the relay and cell-center user is imperfect. Both the exact analytical expression of outage probability and an approximate expression of the ergodic sum rate at high signal-to-noise ratio (SNR) are derived. Numerical results demonstrate that: 1) the FD relaying NOMA system outperforms the HD relaying NOMA system at low SNR, but the situation is exactly the opposite at high SNR; 2) the mutual interference can cause a larger performance gap than the self-interference at the relay; 3) the power allocation coefficients for the cell-center user and relay can affect the performance more significantly than those for cell-edge users.11This article was presented in part at the IEEE International Workshop on Signal Processing Advances in Wireless Communications 2019 [1].
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096710607&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TCOMM.2020.3017002
    http://hdl.handle.net/10576/36411
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video