• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An optimal uplink traffic offloading algorithm via opportunistic communications based on machine learning

    Thumbnail
    Date
    2020-11-01
    Author
    Wang, Qian
    Gao, Zhipeng
    Li, Zifan
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Opportunistic communications as an efficient traffic offloading method can be used to offload uplink traffic of cellular networks to Wi-Fi networks. However, because of its contact pattern (contact frequency and contact duration) the offloading method could not ensure the data to be successfully offloaded to Wi-Fi Access Points (APs) within a time constraint. In this paper, we focus on maximizing the probability of offloading data to Wi-Fi APs by fragmenting the data and assigning the fragments to different direct or indirect paths generated by opportunistic contacts. Firstly, we propose two methods based on mobility prediction, which is realized by machine learning, to separately calculate the probability of offloading data to Wi-Fi APs by the direct offloading path considering multiple opportunistic contacts and contact duration, and the probability of indirectly offloading data to Wi-Fi APs by the indirect offloading path. Then, based on the probability calculation methods the offloading probability maximization is formulated as a non-linear integer programming problem, and we propose a distributed heuristic algorithm to solve it considering complexity of the probability calculation and limited computation capacities of devices. Simulation results prove the data offloading probability of our proposed algorithm outperforms other algorithms under different simulation environment.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092236262&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12083-020-00904-7
    http://hdl.handle.net/10576/36487
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video