• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Theoretical study of laser light generation and color image formation: FA1:Cs+ and FA2:Li+ centers at the low coordination (100) and (110) surfaces of AgCl and AgBr

    Thumbnail
    Date
    2005
    Author
    Shalabi, A. S.
    Kamel, M. A.
    Ammar, H. Y.
    Metadata
    Show full item record
    Abstract
    The FA1:Cs+ and FA2:Li+ color centers at the low coordination (100) and (110) surfaces of AgCl and AgBr play important roles in laser light generation and color image formation. Double-well potentials at these surfaces are investigated by using ab initio calculations. Quantum clusters were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces, and ions that are the nearest neighbors to the FA ? defect site are allowed to relax to equilibrium. The calculated Stokes shifts suggest that laser light generation is sensitive to the simultaneous effects of the vibrational coupling mode, the impurity cation, the coordination number of the surface ion, the lattice anion, and the choice of the basis set centered on the anion vacancy. An attempt has been made to explain these effects in terms of Madelung potential, electron affinity, and optical�optical conversion efficiency. All relaxed excited states of the defect-containing surfaces are deep below the lower edges of the conduction bands of the ground-state defect-free surfaces, suggesting that the FA(I):Cs+ and FA(II):Li+ centers are suitable laser defects. The dependence of orientational destruction, recording sensitivity, and exciton (energy) transfer on the empty cation; the coordination number of the surface ion; and the lattice anion is clarified. The Glasner�Tompkins empirical rule was generalized to include the impurity cation and the coordination number of the surface ion. As far as color image formation is concerned, the supersensitizer was found to increase the sensitizing capabilities of two primary dyes in the excited states by increasing the relative yield of quantum efficiency. The (110) surfaces of AgBr and AgCl were more sensitive than the corresponding (100) surfaces, and AgBr thin film was found to be more sensitive than that of AgCl. On the basis of quasi-Fermi levels, the difference in the sensitizing capabilities between the examined dyes in the excited states is determined.
    DOI/handle
    http://dx.doi.org/10.1002/qua.20515
    http://hdl.handle.net/10576/3650
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video