A Differentially Private Big Data Nonparametric Bayesian Clustering Algorithm in Smart Grid
المؤلف | Guan, Zhitao |
المؤلف | Lv, Zefang |
المؤلف | Sun, Xianwen |
المؤلف | Wu, Longfei |
المؤلف | Wu, Jun |
المؤلف | Du, Xiaojiang |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2022-11-27T08:38:04Z |
تاريخ النشر | 2020-10-01 |
اسم المنشور | IEEE Transactions on Network Science and Engineering |
المعرّف | http://dx.doi.org/10.1109/TNSE.2020.2985096 |
الاقتباس | Guan, Z., Lv, Z., Sun, X., Wu, L., Wu, J., Du, X., & Guizani, M. (2020). A differentially private big data nonparametric Bayesian clustering algorithm in smart grid. IEEE Transactions on Network Science and Engineering, 7(4), 2631-2641. |
الملخص | Smart systems, including smart grid (SG) and Internet of Things (IoT), have been playing a critical role in addressing contemporary issues. Taking full advantage of the big data generated by the smart grid can enhance the system stability and reliability, increase asset utilization, and offer better customer experience. To better support the data-driven smart grid, the machine learning technologies such as cluster analysis can be applied to process the massive data generated in smart grid. However, the process of cluster analysis may cause the disclosure of personal private information. In this paper, to achieve privacy-preserving cluster analysis in smart grid, we propose IDPC, a Differentially Private Clustering algorithm based on the Infinite Gaussian mixture model (IGMM). IDPC uses a combination of nonparametric Bayesian method and differential privacy. The nonparametric Bayesian method allows certain parameters to change along with the data and it is usually adopted in a clustering algorithm without a fixed number of clusters. The Laplace mechanism is used in data releasing process to make IDPC differentially private. We present how to make the nonparametric Bayesian clustering algorithm differentially private by adding Laplace noise. By security analysis and performance evaluation, IDPC is proved to be privacy-preserving as well as efficient. |
راعي المشروع | The work was supported in part by Beijing Natural Science Foundation under Grant 4182060 and in part by the National Natural Science Foundation of China under Grant 61972148. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Big data Clustering Differential privacy Nonparametric Bayesian Method Smart grid |
النوع | Article |
الصفحات | 2631-2641 |
رقم العدد | 4 |
رقم المجلد | 7 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]