عرض بسيط للتسجيلة

المؤلفJorayeva, Manzura
المؤلفAkbulut, Akhan
المؤلفCatal, Cagatay
المؤلفMishra, Alok
تاريخ الإتاحة2022-11-30T11:23:19Z
تاريخ النشر2022
اسم المنشورSensors
المصدرScopus
المصدر2-s2.0-85132376127
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/s22134734
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36787
الملخصSmartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred. 2022 by the authors. Licensee MDPI, Basel, Switzerland.
راعي المشروعFunding: This research was funded by Molde University College-Specialized Univ. in Logistics, Norway for the support of Open Access fund.
اللغةen
الناشرMDPI
الموضوعAndroid applications; deep learning; machine learning; mobile application; software defect prediction; software fault prediction
العنوانDeep Learning-Based Defect Prediction for Mobile Applications
النوعArticle
رقم العدد13
رقم المجلد22
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة