عرض بسيط للتسجيلة

المؤلفWu, H.
المؤلفGuan, Donghai
المؤلفHan, Guangjie
المؤلفYuan, Weiwei
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-12-05T14:39:28Z
تاريخ النشر2020-06-01
اسم المنشور2020 International Wireless Communications and Mobile Computing, IWCMC 2020
المعرّفhttp://dx.doi.org/10.1109/IWCMC48107.2020.9148129
الاقتباسWu, H., Guan, D., Han, G., Yuan, W., & Guizani, M. (2020, June). Signed Network Embedding with Dynamic Metric Learning. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (pp. 533-538). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728131290
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089696799&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36938
الملخصNetwork embedding is an important method to learn low-dimensional vector representations of nodes in networks, which has wide-ranging applications in network analysis such as link prediction. Most existing network embedding models focus on the unsigned networks with only positive links. However, networks should have both positive and negative links in practical applications such as the trust and distrust relationships in social networks. It is certain that there are different properties between positive links and negative links, which means the network embedding models designed for unsigned networks are not suitable for signed networks. In this paper, we propose SNE-DML, a signed network embedding model with dynamic metric learning. The model learns positive and negative distance metrics respectively in the training process. We conduct sign prediction experiments on three datasets and compare with seven baselines including three signed network embedding models and four state-of-the-art unsigned network embedding models. The experimental results show the effectiveness of our model.
راعي المشروعThis research was supported by Nature Science Foundation of China (Grant No. 61672284), Nature Science Foundation of Jiangsu Province (Grant No. BK20171418), China Postdoctoral Science Foundation (Grant No. 2016M591841) and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1601225C).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعdynamic metric learning
sign prediction
Signed network embedding
العنوانSigned Network Embedding with Dynamic Metric Learning
النوعConference Paper
الصفحات533-538
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة