• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    UAV Placement Optimization for Internet of Medical Things

    Thumbnail
    Date
    2020-06-01
    Author
    Tang, Chaogang
    Zhu, Chunsheng
    Wei, Xianglin
    Rodrigues, Joel J.P.C.
    Guizani, Mohsen
    Jia, Weijia
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Internet of Medical Things (IoMT), intended for real-time health monitoring, are generating quantity of health data such as electrocardiogram, oxygen saturation, and blood pressure every second. The captured data should be processed and analyzed in a delay sensitive way which is vital to the survival rate for cardiovascular and cerebrovascular diseases. In this regard, Unmanned Aerial Vehicles (UAVs) have already demonstrated the enormous potentials. To begin with, due to better line-of-sight, wider communication and more flexible on-demand deployment, UAVs can realize seamless wireless connection to IoMT. Furthermore, UAVs can act as fog nodes to provision services for IoMTs such as task performing and data analysis. We in this paper focus on a sub-problem, i.e., the placement of UAVs over the serving area when they function as fog nodes. In the airborne fog computing, the placement of UAVs has an important influence on energy consumption and exploration area, let alone the communication coverage of the personal health devices on the ground. Therefore, we in this paper propose a particle swarm optimization (PSO) based algorithm to optimize the UAV placement over the serving area for the IoMT devices. We have conducted extensive simulations to evaluate it. The results show that our approach can significantly reduce the number of UAVs needed to deploy while considering the communication coverage and other factors.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089660740&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC48107.2020.9148581
    http://hdl.handle.net/10576/36940
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video