عرض بسيط للتسجيلة

المؤلفJiang, Jinfang
المؤلفHan, Guangjie
المؤلفLiu, Li
المؤلفShu, Lei
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-12-05T22:34:07Z
تاريخ النشر2020-06-01
اسم المنشورIEEE Wireless Communications
المعرّفhttp://dx.doi.org/10.1109/MWC.001.1900410
الاقتباسJiang, J., Han, G., Shu, L., & Guizani, M. (2020). Outlier detection approaches based on machine learning in the internet-of-things. IEEE Wireless Communications, 27(3), 53-59.‏
الرقم المعياري الدولي للكتاب15361284
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086889312&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36949
الملخصOutlier detection in the Internet of Things (IoT) is an essential challenge issue studied in numerous fields, including fraud monitoring, intrusion detection, secure localization, trust management, and so on. Conventional outlier detection technologies cannot be used directly in IoT due to the open nature of wireless communication as well as the resource-constrained characteristics of end nodes. Therefore, this article provides a comprehensive survey of new outlier detection approaches based on machine learning for IoT. The approaches are first carefully discussed based on their adopted machine learning algorithms. In addition, the performance of them with respect to the advantages and the drawbacks are compared in detail, which naturally leads to some open research issues that are analyzed afterward.
راعي المشروعThe work is supported by the National Key Research and Development Program, No. 2017YFE0125300, the National Natural Science Foundation of China-Guangdong Joint Fund under Grant No. U1801264, the Jiangsu Provincial Six Talent Peaks Project No. XYDXX-012 and the Jiangsu Key Research and Development Program, No. BE2019648 , and Project of Fujian University of Technology, No. GY-Z19066.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAnomaly detection
العنوانOutlier detection approaches based on machine learning in the internet-of-things
النوعConference Paper
رقم العدد3
رقم المجلد27
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة