• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Node Location Algorithm Based on Node Movement Prediction in Underwater Acoustic Sensor Networks

    Thumbnail
    Date
    2020-03-01
    Author
    Zhang, Wenbo
    Han, Guangjie
    Wang, Xin
    Guizani, Mohsen
    Fan, Kaiguo
    Shu, Lei
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Aiming at the problems of the low mobility, low location accuracy, high communication overhead, and high energy consumption of sensor nodes in underwater acoustic sensor networks, the MPL (movement prediction location) algorithm is proposed in this article. The algorithm is divided into two stages: mobile prediction and node location. In the node location phase, a TOA (time of arrival)-based ranging strategy is first proposed to reduce communication overhead and energy consumption. Then, after dimension reduction processing, the grey wolf optimizer (GWO) is used to find the optimal location of the secondary nodes with low location accuracy. Finally, the node location is obtained and the node movement prediction stage is entered. In coastal areas, the tidal phenomenon is the main factor leading to node movement; thus, a more practical node movement model is constructed by combining the tidal model with node stress. Therefore, in the movement prediction stage, the velocity and position of each time point in the prediction window are predicted according to the node movement model, and underwater location is then completed. Finally, the proposed MPL algorithm is simulated and analyzed; the simulation results show that the proposed MPL algorithm has higher localization performance compared with the LSLS, SLMP, and GA-SLMP algorithms. Additionally, the proposed MPL algorithm not only effectively reduces the network communication overhead and energy consumption, but also improves the network location coverage and node location accuracy.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082038028&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2963406
    http://hdl.handle.net/10576/37261
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video