عرض بسيط للتسجيلة

المؤلفZhai, Yanlong
المؤلفBao, Tianhong
المؤلفZhu, Liehuang
المؤلفShen, Meng
المؤلفDu, Xiaojiang
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-12-14T16:44:26Z
تاريخ النشر2020-02-01
اسم المنشورIEEE Wireless Communications
المعرّفhttp://dx.doi.org/10.1109/MWC.001.1900298
الاقتباسZhai, Y., Bao, T., Zhu, L., Shen, M., Du, X., & Guizani, M. (2020). Toward reinforcement-learning-based service deployment of 5G mobile edge computing with request-aware scheduling. IEEE Wireless Communications, 27(1), 84-91.‏
الرقم المعياري الدولي للكتاب15361284
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081694901&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37268
الملخص5G wireless network technology will not only significantly increase bandwidth but also introduce new features such as mMTC and URLLC. However, high request latency will remain a challenging problem even with 5G due to the massive requests generated by an increasing number of devices that require long travel distances to the services deployed in cloud centers. By pushing the services closer to the edge of the network, edge computing is recognized as a promising technology to reduce latency. However, properly deploying services among resource-constrained edge servers is an unsolved problem. In this article, we propose a deep reinforcement learning approach to preferably deploy the services to the edge servers with consideration of the request patterns and resource constraints of users, which have not been adequately explored. First, the system model and optimization objectives are formulated and investigated. Then the problem is modeled as a Markov decision process and solved using the Dueling-Deep Q-network algorithm. The experimental results, based on the evaluation of real-life mobile wireless datasets, show that this reinforcement learning approach could be applied to patterns of requests and improve performance.
راعي المشروعThis work is supported by the National Nature Science Foundation of China (Grant No. 61602037) and the Equipment Pre-Research Field Foundation (Grant No. 61400010104).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعDeep learning
العنوانToward Reinforcement-Learning-Based Service Deployment of 5G Mobile Edge Computing with Request-Aware Scheduling
النوعArticle
الصفحات84-91
رقم العدد1
رقم المجلد27
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة