• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A CNN-Sequence-to-Sequence network with attention for residential short-term load forecasting

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Aouad, Mosbah
    Hajj, Hazem
    Shaban, Khaled
    Jabr, Rabih A.
    El-Hajj, Wassim
    Metadata
    Show full item record
    Abstract
    Residential short-term load forecasting has become an essential process to develop successful demand response strategies, and help utilities and customers optimize energy production and consumption. Most previous works focused on capturing the spatial and temporal characteristics of residential load data but fell short in accurately comprehending its variations and dynamics. The challenges come from the high non-linearity and volatility of the electric load data, and their complex spatial and temporal characteristics. To address these challenges, we propose a hybrid deep learning approach consisting of a Convolutional Neural Network and an attention-based Sequence-to-Sequence network. The model aims at capturing the spatial and temporal features from time-series data, the irregular load pattern, and the frequent peak consumption values to improve the overall quality of the forecasts. The proposed model is compared to several state-of-the-art approaches, and the performance is validated on the residential load data for a household in Sceaux, France. The results showed an improvement of 9.6% in the mean square error on different prediction time horizons. The proposed approach produced more accurate real-time forecasts and showed better adaptation at peak consumption instances. 2022 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.epsr.2022.108152
    http://hdl.handle.net/10576/37483
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video