عرض بسيط للتسجيلة

المؤلفHussein, Ramy
المؤلفShaban, Khaled Bashir
المؤلفEl-Hag, Ayman H.
تاريخ الإتاحة2022-12-21T10:01:45Z
تاريخ النشر2015
اسم المنشورAnnual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/CEIDP.2015.7352003
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37489
الملخصMeasuring partial discharge (PD) phenomena in power transformers is often conducted by acoustic emission (AE) method. However, many interference sources are usually encountered with the captured PD signals which negatively affect the PD detection and classification. Thus, an effective and efficient denoising technique is required to suppress such environmental noises. Most denoising attempts aim to address additive white Gaussian noise, which is considered the main ambient interference source coupling with PD signals through data acquisition process. In this paper, we propose a power spectral subtraction denoising (PSSD) method and examine its denoising performance in the presence of modest and severe noise levels. The simulation results verify that PSSD has superior denoising performance when compared to one of the conventional wavelet shrinkage denoising methods. Four evaluation metrics are utilized to confirm the superiority of PSSD: signal-to-noise ratio, root mean square error, cross-correlation coefficient, and reduction in noise level. 2015 IEEE.
راعي المشروعQatar National Research Fund
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعacoustic emissions signal
interference suppression
Partial discharge
power spectral subtraction denoising
signal-to-noise ratio
wavelet-based denoising
white Gaussian noise
العنوانAcoustic partial discharge signal denoising using power spectral subtraction
النوعConference Paper
الصفحات330-333
رقم المجلد2015-December
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة