Classification ensemble to improve medical named entity recognition
المؤلف | Keretna, Sara |
المؤلف | Lim, Chee Peng |
المؤلف | Creighton, Doug |
المؤلف | Shaban, Khaled Bashir |
تاريخ الإتاحة | 2022-12-21T10:01:46Z |
تاريخ النشر | 2014 |
اسم المنشور | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics |
المصدر | Scopus |
الملخص | An accurate Named Entity Recognition (NER) is important for knowledge discovery in text mining. This paper proposes an ensemble machine learning approach to recognise Named Entities (NEs) from unstructured and informal medical text. Specifically, Conditional Random Field (CRF) and Maximum Entropy (ME) classifiers are applied individually to the test data set from the i2b2 2010 medication challenge. Each classifier is trained using a different set of features. The first set focuses on the contextual features of the data, while the second concentrates on the linguistic features of each word. The results of the two classifiers are then combined. The proposed approach achieves an f-score of 81.8%, showing a considerable improvement over the results from CRF and ME classifiers individually which achieve f-scores of 76% and 66.3% for the same data set, respectively. 2014 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Biomedical named entity recognition Conditional random field Information extraction Machine learning Maximum entropy Medical text mining |
النوع | Conference Paper |
الصفحات | 2630-2636 |
رقم العدد | January |
رقم المجلد | 2014-January |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]