• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative Evaluation of Sentiment Analysis Methods Across Arabic Dialects

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1877050917321750-main.pdf (413.7Kb)
    Date
    2017
    Author
    Baly, Ramy
    El-Khoury, Georges
    Moukalled, Rawan
    Aoun, Rita
    Hajj, Hazem
    Shaban, Khaled Bashir
    El-Hajj, Wassim
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sentiment analysis in Arabic is challenging due to the complex morphology of the language. The task becomes more challenging when considering Twitter data that contain significant amounts of noise such as the use of Arabizi, code-switching and different dialects that varies significantly across the Arab world, the use of non-Textual objects to express sentiments, and the frequent occurrence of misspellings and grammatical mistakes. Modeling sentiment in Twitter should become easier when we understand the characteristics of Twitter data and how its usage varies from one Arab region to another. We describe our effort to create the first Multi-Dialect Arabic Sentiment Twitter Dataset (MD-ArSenTD) that is composed of tweets collected from 12 Arab countries, annotated for sentiment and dialect. We use this dataset to analyze tweets collected from Egypt and the United Arab Emirates (UAE), with the aim of discovering distinctive features that may facilitate sentiment analysis. We also perform a comparative evaluation of different sentiment models on Egyptian and UAE tweets. These models are based on feature engineering and deep learning, and have already achieved state-of-The-Art accuracies in English sentiment analysis. Results indicate the superior performance of deep learning models, the importance of morphological features in Arabic NLP, and that handling dialectal Arabic leads to different outcomes depending on the country from which the tweets are collected.
    DOI/handle
    http://dx.doi.org/10.1016/j.procs.2017.10.118
    http://hdl.handle.net/10576/37495
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video