Cost effective assessment of transformers using machine learning approach
المؤلف | Benhmed, Kamel |
المؤلف | Shaban, Khaled Bashir |
المؤلف | El-Hag, Ayman |
تاريخ الإتاحة | 2022-12-21T10:01:46Z |
تاريخ النشر | 2014 |
اسم المنشور | 2014 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2014 |
المصدر | Scopus |
الملخص | Furan content in transformer oil is highly correlated with the transformer insulation paper aging. In this paper, the ranges of furan content in power transformer is predicted using measurements of transformer oil tests like breakdown voltage, acidity and water content. Machine learning approach is adopted, and maintenance data collected from 90 transformers are used. A maximum of 67% recognition rate was achieved using Decision Tree classifier. The major challenge of the used data is the relatively low number of available samples in certain furan intervals. Two solutions have been proposed to overcome this imbalanced classification problem, namely, using an over-sampling technique and balancing data distributions by reducing the number of intervals to be predicted to three instead of five intervals. The recognition rate has improved to reach 80%. 2014 IEEE. |
راعي المشروع | Qatar National Research Fund |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Furan content machine learning Power transformer transformer oil |
النوع | Conference |
الصفحات | 328-332 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2428 items ]