• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Histogram-based thresholding in discrete wavelet transform for partial discharge signal denoising

    Thumbnail
    Date
    2015
    Author
    Hussein, Ramy
    Shaban, Khaled Bashir
    El-Hag, Ayman H.
    Metadata
    Show full item record
    Abstract
    White noise is a major interference source that affects the partial discharge (PD) signal detection and recognition. Wavelet shrinkage denoising methods can efficiently reject the white noise embedded in the PD signal acquisition and measurement processes. The wavelet threshold determination is a key factor in the quality of noise suppression from signals. A novel threshold estimation technique, namely histogram-based threshold estimation (HBTE), is introduced to obtain the optimal level-dependent wavelet thresholds of noisy partial discharge signals. Unlike existing wavelet thresholding techniques, HBTE obtains two different threshold values for each wavelet subband. The proposed method is applied on measured PD signals at different noise levels. Experimental results show that the proposed thresholding approach outperforms the conventional threshold selection rules in terms of signal-to-noise ratio, cross correlation coefficient, root mean square error, and reduction in noise level. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICCSPA.2015.7081289
    http://hdl.handle.net/10576/37509
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video