• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards cost-effective maintenance of power transformer by accurately predicting its insulation condition

    No Thumbnail [120x130]
    Date
    2012
    Author
    Ghunem, Refat Atef
    Shaban, Khaled Bashir
    El-Hag, Ayman Hassan
    Assaleh, Khaled
    Metadata
    Show full item record
    Abstract
    Insulation resistance (IR) or Megger test has been commonly performed in both preventive and corrective maintenance activities to verify power transformers' insulation condition. Other insulation diagnosis tests such as oil breakdown voltage (BDV), water content and dissolved-gas-in-oil analysis have been conducted along with the IR test. In this paper, a prediction model is developed to correlate IR measurements of the power transformer with its oil quality parameters, the concentration of its total dissolved combustible gases (TDCG), and its carbon dioxide to carbon monoxide concentration (CO 2/CO) ratio. Four models, based on feed-forward artificial neural networks with back-propagation, are trained on collected data of real measurements. Accuracy levels of 96%, 84%, 88%, and 91% are obtained for BDV, water content, TDCG, and CO2/CO ratio respectively. Utilizing the proposed model can reduce maintenance costs by preventing and shortening transformers' outage times using inexpensive test, i.e. using IR test only. 2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/EPEC.2012.6474933
    http://hdl.handle.net/10576/37530
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail