• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adversarial Attacks for Image Segmentation on Multiple Lightweight Models

    Thumbnail
    View/Open
    Adversarial_Attacks_for_Image_Segmentation_on_Multiple_Lightweight_Models.pdf (2.075Mb)
    Date
    2020-01-01
    Author
    Kang, Xu
    Song, Bin
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Due to the powerful ability of data fitting, deep neural networks have been applied in a wide range of applications in many key areas. However, in recent years, it was found that some adversarial samples easily fool the deep neural networks. These input samples are generated by adding a few small perturbations based on the original sample, making a very significant influence on the decision of the target model in the case of not being perceived. Image segmentation is one of the most important technologies in the medical image and automatic driving field. This paper mainly explores the security of deep neural network models based on the image segmentation tasks. Two lightweight image segmentation models on the embedded device suffered from the white-box attack by using local perturbations and universal perturbations. The perturbations are generated indirectly by a noise function and an intermediate variable so that the gradient of pixels can be propagated unlimitedly. Through experiments, we find that different models have different blind spots, and the adversarial samples trained for a single model have no transferability. In the end, multiple models are attacked by our joint learning. Finally, under the constraint of low perturbation, most of the pixels in the attacked area have been misclassified by both lightweight models. The experimental result shows that the proposed adversary is more likely to affect the performance of the segmentation model compared with the FGSM.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081060202&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.2973069
    http://hdl.handle.net/10576/37554
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video