• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identity and Aggregate Signature-Based Authentication Protocol for IoD Deployment Military Drone

    Thumbnail
    View/Open
    Identity_and_Aggregate_Signature-Based_Authentication_Protocol_for_IoD_Deployment_Military_Drone.pdf (5.748Mb)
    Date
    2021-09-07
    Author
    Jan, Saeed Ullah
    Khan, Habib Ullah
    Metadata
    Show full item record
    Abstract
    With the rapid miniaturization in sensor technology, ruddervator, arduino, and multi-rotor system, drone technology has fascinated researchers in the field of network security. It is of critical significance given the advancement in modern strategic narratives. This has special relevance to drone-related operations. This technology can be controlled remotely by an invisible yet credible operator sitting to a powerful intelligence computer system (PICS) or an airborne control and command platform (AC2P). The two types of drones (reconnaissance and attacking) can communicate with each other and with the PICS or AC2P through wireless network channels referred to as Flying Ad Hoc Network or Unmanned Aerial Vehicular Network (FANET or UAVN). This mode of communication is not without some inconvenience. For instance, when the line of sight is broken, communication is mainly carried out through satellite using GPS (Global Positioning System) signals. Both GPS and UAVN/FANET use open network channels for data broadcasting, which are exposed to several threats, thus making security risky and challenging. This risk is specifically eminent in monitoring data transmission traffic, espionage, troop movement, border surveillance, searching, and warfare battlefield phenomenon, etc. This issue of security risk can be minimized conspicuously by developing a robust authentication scheme for IoD deployment military drones. Therefore, this research illustrates the designing of two separate protocols based on the aggregate signature, identity, pairing cryptography, and Computational Diffie-Hellman Problem (CDHP) to guarantee data integrity, authorization, and confidentiality among drones and AC2P/PICS. More importantly, the outdated data transmission flaw has also been tackled, which is of obvious concern to the past designed protocols. The security of the proposed designs is formally verified using a random oracle model (ROM), a real-or-random (ROR) model, and by informally using pragmatic illustration and mathematical lemmas. Nonetheless, the performance analysis section will be executed using the algorithmic big-O notation. The results show that these protocols are verifiably protected in the ROM and ROR model using the CDHP.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114720216&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3110804
    http://hdl.handle.net/10576/37621
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video